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An investigation is made of selective withdrawal of a linear stratified fluid from 
a line sink in a channel of depth d.  The flow is characterized by a densimetric 
Froude number P = Q/Nd2, where Q is the discharge per unit width and N is the 
VBisala frequency. The dynamics of establishment of flow are investigated 
theoretically. Analytic results are obtained from a linearized theory based on a 
systematic perturbation scheme for small values of F .  These results lead to a 
proper identification of the successive arrival of ‘ columnar disturbance modes ’ 
as the mechanism responsible for the development of flow concentration in the 
withdrawal region. Viscous and diffusive effects are also examined. For larger 
times and higher discharges (higher values of P), nonlinear effects become 
important, and the full Navier-Stokes equations are now solved numerically by 
a finite-difference procedure in a ‘stretched’ co-ordinate system. The solutions 
indicate that the establishment of the steady flow field is due to the successive 
arrival and interaction of ‘ columnar disturbance modes ’. Steady-state solutions 
are also presented, and a similarity profile is obtained. Comparison of the 
theoretical findings with experimental results are presented in part 2. Agree- 
ment with experimental measurements is found to be excellent. 

1. Introduction 
The main characteristic that distinguishes a stratified medium in a gravita- 

tional field from a homogeneous medium is its ability to sustain internal gravity 
waves and flow concentrations. This has been observed in nature, it has wide- 
spread geophysical implications, and it is of fundamental importance for fluid 
mechanics. That this is so for water quality management is shown by the ‘selec- 
tive withdrawal’ of water in a reservoir (Wunderlich & Elder 1971 ; Wunderlich 
1971). I n  deep lakes or reservoirs, seasonal change in solar radiation is the cause of 
density stratification from spring to late autumn. Solar heating, aided by mixing 
due to surface winds, penetrates downward, t o  establish a warm upper layer 
(the epilimnion), followed by a transition layer (the metalimnion or thermocline), 
which leads to the lower dense cold region (the hypolimnion). I n  north temperate 
lakes (such as Cayuga lake in upper New York state), the hypolimnion is thick, 
whereas, in more southern lakes or reservoirs (such as those in the Tennessee 
Valley Authority (TVA) river basin system), the metalimnion is thick and shows 
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an almost linear increasein density with depth. When outflow is withdrawn from 
density-stratified reservoirs, the water comes mainly from zones a t  elevations 
corresponding approximately, in hydroelectric dams, to the level of the intake 
openings leading to the turbine penstocks. This is selective withdrawal. The various 
water quality parameters (such as temperature, dissolved oxygen (DO), foreign 
mineral contents, etc.) are interrelated with the density and advected by the 
withdrawal current. Thus, selective withdrawal has a long-range effect on the 
environment, especially on the quality of drinking water and on aquatic life, 
in both the reservoir and its downstream river (Wunderlich & Elder 1968). 
It has been reported (Sport Fishing U.X.A., 1971, Government Printing Press) 
that the population of some warm-water species declines drastically after a 
dam begins to release cold water from the lower layers of its reservoir. Further- 
more, when a hydroelectric power plant operates as a peaking plant, the 
quality and quantity of discharge in the downstream river also undergo periodic 
variation. 

I n  the present study, selective withdrawal from a line sink is investigated in 
terms of the dynamics of establishment. I n  part 1 we present analytic results from 
a linearized theory, and numerical solutions of the full nonlinear governing equa- 
tions. I n  part 2 (Kao, Pao & Wei 1974) we make comparisons between experi- 
mental data and the relevant theoretical, numerical and field results. The 
emphasis is on the nature of the propagation of disturbances, the development of 
the flow field, and the final steady-state velocity field. 

The analysis of the flow of a linearly stratified fluid into a horizontal line sink 
was first made by Yih (1958), who obtained the exact steady-state solution, valid 
for r1 < F < 00, where F is the densimetric Froude number Q/Nd2 (Q is the dis- 
charge rate per unit width, d is the depth of the channel, the Vaisala frequency 
N = (Kg)*,andK = - (l/p,)dp/dZistheslopeofthedensityvariationfarupstream, a 
constant). Yih assumed the velocity and density to be undisturbed far upstream, 
so that no solution was obtained for P < 7r-l. Debler (1959) then showed by 
experiment that  F N n-l is indeed a critical Froude number, above which Yih’s 
solution is valid, and below which the flow separates into a flowing region near 
the level of the sink, the fluid remaining essentially stagnant elsewhere (i.e. selec- 
tive withdrawal occurs).? Debler also found that  the densimetric Froude number 
F,, based upon the depth of the flowing zone, remained essentially constant, 
having a value of 0.28 for various discharges. By introducing a free stream- 
line which separates the flowing zone from the completely stagnant regime, 
Kao (1965, 1970) obtained a family of solutions corresponding to 7r-l < Fl < 00 
for any given discharge rate. Kao (1970) gave Fl = 0.33 as the unique Froude 
number for all separated flows. I n  his solution, the thickness of the flow zone 
remains constant with distance upstream, as a consequence of the inviscid 
assumption. Koh ( 1966a) obtained a steady-state solution for aninfinite medium, 
incorporating viscous and diffusive effects and neglecting the nonlinear terms. 
His solution predicts that the growth rate of the thickness of the flowing zone is 
proportional to X*, where X is distance from the sink. By partitioning the flow 

t The analogous phenomenon of selective withdrawal in rotating fluids was studied by 
Pao & Kao (1969), Shih & Pao (1971) and Pao & Shih (1973). 
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into inner and outer regimes, and using the outer flow as the upstream boundary 
condition for his inner flow equations, Imberger (1972) obtained a steady-state 
solution, which improved Koh’s prediction about the thickness of the flowing 
zone, by requiring that the flowing zone be thick enough to achieve Kao’s value 
near to the sink. These studies were all concerned with the steady-state problem, 
so that the dynamics of establishment were not investigated. Trustrum (1964) 
solved a linearized initial-value problem based on the Boussinesq and Oseen ap- 
proximations, and obtained an asymptotic solution for large times, valid for 
P > n-l. The approximations involved, however, invalidated her solutions for 
F < 7r-I. Koh ( 1966 b )  also solved alinearized initial-value problem for a sink in an 
infinite medium. His solution predicted an increase in the horizontal velocity 
towards the sink with time along the horizontal plane containing the line sink. 
But this increase is felt instantaneously a t  all distances away from the sink, by 
an amount inversely proportional to the radial distance from the sink, which is 
physically unrealistic. The time-dependent behaviour of stratified flow into a 
line sink is therefore largely unexplored. To trace the actual history of flow 
establishment, an initial-value problem is solved, and solutions obtained for 
various times. For low values of P, a linearized inviscid problem, obtained by a 
systematic perturbation scheme, is solved analytically. Viscous and diffusive 
effects are also examined. For larger F ,  nonlinear interactions become important, 
and the full Navier-Stokes equations are solved numerically. The solutions 
indicate that the establishment of the steady flow field is due to the successive 
arrival and interaction of columnar disturbance modes. Steady-state numerical 
solutions are also found. A similarity velocity profile is obtained. 

2. The linearized initial-value problem 
2, l .  Formulation of problem and linearized solution for velocity field 

We consider the flow into a line sink situated at  the origin of an X, Z co-ordinate 
system in a channel of depth d (as shown in figure 1). The initial-value problem 
corresponds to starting the discharge suddenly from an initially stationary state 
which is stratified linearly. We seek a consistent perturbation scheme valid for 
finite times. If Q is the discharge per unit width of the channel, then, with d 
taken as the characteristic length, the characteristic velocity is U with U = &Id. 
Thus, we write (X, 2) = (zd, xd), and the corresponding velocities 

(u*, w*) = (UU, WU),  

so that (x, z )  and (u, w )  are dimensionless. If p(2) is the initial stratification and 
p ( 0 )  = po, p ( d )  = ps, then N-l = (Kg)-& gives the proper characteristic time. 

We let the time-dependent density field p* be equal to po( I - KZ) +p’. Cross- 
differentiating Euler’s equations of motion, and using continuity, we have, after 
normalization with the above characteristic quantities, the vorticity equation 
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FIGURE 1. Definition sketch. 

where p = p'/(p,N&/gd), 5 is the dimensionless vorticity, t the dimensionless 
time. As usual, gravity is acting in the negative z direction. The equation of 
density conservation upon normalization is 

at 

From continuity we have u = aY/az, w = - ayP/ax, so that 

On substitution of these relations into (1)  and (2),  we have 

a(v2yP,~) - ap 
a(x,z) ax, 

_ -  a 
at -VZY+F 

We now introduce a perturbation series in F ,  

Y = $0+F$-,+J'2$2+...,  
p = p0+Fp1+P2p2+ ... . 

The zeroth-order equations are then the well-known linearized equations 

These are to be solved subject to the boundary conditions $O = 0 for z = 0, 
x < 0 ;  $O = H ( t )  for z = I ,  x < 0, and for 0 < z < 1, x = 0; and the initial con- 
dition u = w = 0 and p = 0. ( H ( t )  is the Heaviside unit step function.) 

We cast the problem into a slightly more convenient form by letting 

$ = $O-xH(t). 

On eliminating po from ( 5 )  and (6), the initial/boundary-value problem in $ is 

(7) 
a 2  
-(V2$)+- = 0 (x < 0) 0 < 2 < 1, t 2 O ) ,  
at2 8x2 
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(i) $ = 0 for z = 0, x c 0,  

(ii) $ = 0 for z = 1, x < 0, 

(iii) q+ = (1 - z )  H(t) 
(iv) 111.1 < -oo for O < x <  1, x=--oo, 

(v) -V2$=0, V 2 + = 0  at t = 0 .  

We introduce the Laplace transform in t and its inverse, and set 

for 0 c z < 1, x = 0, 

a 
at 

and 

- 
$F(X, z,a) = q+(x, 2, t) exp - s t ~  at, 
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where y is a real number that places the path of integration to the right of all 
singularities of the integrand in the complex s plane. On taking the Laplace 
transform of (7), and solving the resulting boundary-value problem by separa- 
tion of variables, we get, after some calculation, the solutiont 

From (8) we see immediately, on invoking the Tauberian theorem for t --f 0, 
that, as s 3 00, 

“ 0 2  
Iim s. $ = c - exp (nmx) sin nnz, x < 0, 
s-w n = l  n7T 

(9) 
“ 0 2  or $O(x, z, 0 )  = x + 2 - exp (nnx) sinnnz, x < 0, 

n=l nn 
which is the solution for a potential flow into a line sink as it should be. 

Fort =I= 0, 

The integral in (10) is now to be evaluated in the complex s plane. It is observed 
that the integral has branch points a t  s = & i and a simple pole at s = 0. The 
path of integration rl is indicated in figure 2. This integration may be most 
readily performed by deforming the contour around the Riemann sphere, and 
evaluatingit around a circle r2 about the north pole by the transformation r] = s-l. 
Thus we can write the integral in (10) as 

which is to be evaluated around r] = 0. The result is 

t For a sink located a t  points on the z axis other than the origin, the solution is similar, 
except for the dependence of a,, on n. The essential points of the subsequent discussion are 
unaffected by a specific choice of sink location. 
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s plane 

y+iw 

y - i c o  

FIGURE 2. Contour around branch cut in s plane. 

Substituting the above back into (lo), we have 

2 -+ (i) [gnnx + 3(nnrx)z] t 4  

- (&)2[325nnrx+135(nm)2+ 1 5 ( n n ~ ) ~ ] t ~ +  ... . (1l)t 

The above series converges for all values of t ;  but the rate of convergence is 
extremely slow for large values oft. For small to moderate values oft, the series 
converges rapidly. The development of flow is illustrated by computing the solu- 
tion in (11); it  is shown in figure 3 for t = 0.5, 2.0 and 3.0, which indicates the 
development of flow concentration through the compression of the streamlines. 
At t = 3 the upstream disturbance has propagated to just beyond x = - 1, and 
a very weak eddy begins to make its appearance. The horizontal velocity profile 
a t  several x positions and different times is shown in figure 4, and a typical jet- 
like velocity profile is obtained a t  x = - 0.4, t = 3. 

It is of interest to examine the nature of the propagation of disturbances. For 
sufficiently large times in the far field, I a2$/az2) $ I a2$/ax21 ; thus ( 7 )  reduces to 

1 

t The developments leading to this solution were presented by Kao, Pao & Wei (1972). 
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with the boundary and initial conditions for (7)  remaining the same. Equation 
(12) can be solved by the same method used in solving (7), and the solution is 

The only singularity of the above integral is located at s = 0 on the complex 
s plane, and the inversion is straightforward; thus we have 

(13) 
“ 2  

n=l nn $(x, z ,  t )  = - sinnnzH(nnx +- t ) ,  
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FIGURE 4. Horizontal velocity profile a t  various x and t .  

(14) 
" 2  

n=l  nn 
~ O ( z , z , t )  = z +  C -sinn~zH(nnz+t).  

This result indicates clearly that the various modes of disturbance travel like 
waves a t  the velocity c, = l/nn-, or in dimensional form 

C, = Nd/nn. (15) 

Such wave-like disturbance modes are called ' columnar disturbaiices ' or 
' columnar waves of zero frequency ', since they propagate upstream in the form 
of horizontal jet-like columns. 

The assumption )a2Y/az2) 9 ]a2Y/&2] or lau/az] 9 law/axl implies the hydro- 
static condition in the vertical direction through the vorticity equation. This 
condition, in turn, is generally valid for long waves. Indeed 5 is iiow approxi- 
mately equal to a2Y'/8z2. Thus, from (3) and (4), the governing equations become 
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It may be readily seen that these nonlinear equations are satisfied by the solution 

1 
nn- Y? = -sinnnz$, 

where 9 is an arbitrary function. The above solution represents a mode of per- 
manent form propagating with the velocity c, in the negative x direction. In  the 
linearized case, such modes may be superposed to satisfy the boundary condition 
a t  x = 0 yielding the solution in (14). 

The simplified treatment just given helps us to focus our attention on the 
propagation of modes. The actual ' columnar disturbance ' given by the linearized 
theory has a spatial structure given by the full solution ( 1  1).  We may examine 
the spatial structure of each mode (i.e. for any fixed n) by computing the series in 
m as a function of nn-x for various values oft. Specifically, we compute the series 

The centre-line horizontal component of velocityt due to the disturbance is 
then given by twice the value of the sum above. The result of this computation 
is shown in figure 5 ,  where we have plotted this disturbance to the centre-line 
velocity u z / U  against (nn-x + t )  for t = 6 , 8  and 10. The figure shows, for any fixed 
time, the spatial structure of a disturbance mode. It is seen that the curves 
coincide for (nnx + t) < 0 (i.e. the forward tongue of the disturbance is indeed of 
permanentform). Thezero on theabscissa corresponds to thepoint I X I  = t1n.r = c, t 
and may be regarded as the wave front. Behind the wave front, the wave does not 
have a permanent form and the wave disperses, and achieves the shape reminis- 
cent of the Fresnel integral which is typical of dispersive waves. 

In  the regime where the linearized theory is valid, we may expect the dis- 
turbance modes t o  arrive one at  a time and the solution is merely a superposition 
of the modes. However, since the whole flow field is moving towards the sink 
after initiation of the flow, only those disturbances with propagation speeds 
greater than the uniform speed &Id can reach far upstream. Thus for H = 0.014, 
say, only 22 modes can propagate upstream. From (18)) it is expected that the 
same is true even in the nonlinear regime. Thus the higher the sink discharges 
the fewer the number of modes that can propagate upstream. .If the discharge 
is such that P 2 r-l, then the uniform flow speed is higher than that of the fastest- 
propagating mode (namely n = 1))  there will be no upstream influence, and the 
solution of the kind found by Yih (1958) is applicable. 

2.2. The eSfect of viscosity and diffticsivity 
It may be noted from the solution for the velocity field obtained in $2 .1  that, 
at a fixed x and for large t ,  the velocity gradient in x provided by the linearized 
theory becomes increasingly large, owing to the unattenuated arrival of more and 

t That is, the velocity along the z axis at the level of the sink. 
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FIGURE 5 .  Spatial structure of a disturbance mode. 

more modes. Indeed, from (la),  the asymptotic limit of $0 as t --f 00, for any x, 
is $0 = 1 or a$O/az = 6(z) ,  where 6(x) is the Dirac delta function. This may also 
be seen by applying the Tauberian theorem for t -+ 00 to (8). Thus viscous in- 
fluences are no longer negligible. We may include viscous influence (without 
diffusion), to some extent, by making a boundary-layer type assumption (i.e. 
82/ax2 % a2/ax2); the linearized vorticity equation then assumes the form 

a a2+ az$ a a4$ 

a t 2  a22 ax2 at ax4  
-- +- = €-- 

where B = v/Nd2 is the dimensionless viscosity coefficient. We may examine the 
attenuation of each mode A,(x, t )  sin (nm) separately. The equation governing A, 
is a2A, 1 a2A, aA 

a t 2  n2n2 ax2 at + m2n2 -, = 0. ---- 

For e >> (n47r4)-%, we have A ,  = a,exp{ -en2n2t}, or the amplitude attenuates 
exponentially with t .  Since the disturbance travels with a speed ilnn, the spatial 
attenuation of the amplitude as a disturbance propagates upstream is given by 
exp (en37r3x), x < 0. If we now assume that this is the viscous damping factor for 
all modes, then the steady-state solution is 

r n O  

(19) 
-- & 

$O E z+ C -sin(nnz)exp(en3n3x), x < 0, 
n = l  nn 

which closely resembles the solution of Imberger (1972), and that of Koh (1966~) 
for an infinite medium. 
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If we also retain the effect of diffusion, the linearized vorticity equation 
becomes 

where D’ is the diffusivity D normalized by Ndz. The solution by Laplace trans- 
forms satisfying the slip boundary conditions (i)-(iii) of equation (7)  is 

- “ 2  
@ = C - sinnnzeexp{(s2+s(€+Dr)n2n2+€D’n4n4)~nnx}. 

On using the Tauberian theorem for t --f 00, we get the steady-state solution for 
the zeroth-order linearized problem 

nn 

“ 2  
n=l n7’r 

$(x, z ,  t = 00) = C -sin (nnz) exp {(eD’)+n3n3x>, x < 0, 

which agrees with Imberger’s (1972) solution exactly. 

2.3. Calculation of the density field 
The solution for the density field can be obtained similarly. Upon calculation, it 
may be shown that 

Figure 6 shows the lines of constant perturbation density as time increases, and 
the penetration of the disturbance upstream. The penetration progresses on a 
time scale of the order of 1/N,  which was predicted, and is shown by (15). 

3. Numerical solution 
3.1. Formulation 

For higher values of F and longer times, it  is seen that nonlinear effects become 
important. The full Navier-Stokes equa.tions, incorporating both viscosity and 
diffusivity, will now be solved numerically by a finite-difference scheme. The 
governing equations for a viscous, diffusive, stably stratified Boussinesq fluid 
in dimensionless form are 
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FIGURE 6. Isopycnic lines for the perturbation density at  various t .  
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(25) 

Equations (22) and (23) are essentially the same as (2) and (1),  except that the 
viscous and diffusive terms are now included. It is seen that the time scale based 
on the discharge Q is used here. However, the conversion between r and t can 
easily be done with 7/t = P. The dimensionless density y is so defined here that 
any initial density stratification can be used although only linear stratification 
is considered in this paper. 

Initial and boundary conditions. Since the initial and boundary conditions are 
such that y, w, [ and Y are all odd functions of z, while u is an even function of z, 
it is readily seen from (22)-( 24) that they will remain odd functions of z, and that 
u will remain an even function of z, as time goes on. The flow and density fields 
will be symmetric about the line x = 0 a t  all times. Therefore, in the numerical 
computation it is convenient to consider only the first quadrant of x ,  z space, 
where both x and z are positive. 

The initial solution for a sudden start of a sink discharge at the origin is a 
potential flow given by 

for t = 0, x =- 0. (26) 1 2 * 1  
nn=l n 

y = - 2 - -  - exp ( - nnx) sin nm 
[ = 0  

y = - x  

Since Yr, f: and y will remain odd functions of z, it follows that 

Y=O, [ = O ,  y = O  at z = O .  

At z = 1 we have Y = - 1. To avoid a thin viscous boundary layer a t  z = 1, 
a slip condition is imposed here. In  that case, we consider that there exists a 
series of line sinks located along the line x = 0 at intervals two non-dimensional 
lengths from each other (as shown in figure 7). Using a similar argument for 
x = 0,  it can be shown that Y + 1, y +  1 and f: will remain odd functions about 
z = 1.  Hence, the boundary conditions a t  z = 1 are Y = - 1, y = - 1, [ = 0. 
The boundary conditions a t  x = 0 are Y = - 1, [ = 0 and ay/ax = 0, owing to 
symmetry there. At z = 00, the flow and density field remain undisturbed during 
any finite time, since disturbances travel a t  finite speeds. The boundary conditions 
are now summarized in figure 8. 

3.2. Numerical procedure 
The solution of (22)-( 25) is accomplished by writing these equations in a finite- 
difference form, and solving them on a digital computer, according to the follow- 
ing algorithm. 

(i) At t = 0 the initial conditions (26) prevail. (ii) The u and w velocity fields 
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FIGURE 7.  Schematic drawing of a series of sinks located along the line 2 = 0 .  

a t  t = 0 are computed from ( 2 5 ) .  (iii) Equation ( 2 2 ) ,  subject to the appropriate 
boundary conditions (see figure 8), is used to make a time step in the density field 
y. (iv) Equation (23) is used to make a time step in the vorticity field c. (v) With 
the new result for the vorticity field, a new value for the Y field is computed by 
over-relaxing (24)) subject to the appropriate boundary conditions. (vi) The 
u and w velocity fields are then updated from this new field by using ( 2 5 ) .  Steps 
(iii)-(vi) are repeated until a specified time t = tf is reached. The computer can 
be requested to  print out the Y, y, 6, u and w fields at  t = 0, t = tf, and at any 
specified intermediate times, so that the time development of the flow field and 
wave motion can be studied. 

The flow field has a singularity a t  the origin where the flow speed becomes 
infinite, causing numerical instability. To circumvent this difficulty, a small 
horizontal opening of finite length is used, through which a uniform flow is 
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FIGURE 8. Boundary conditions. 

discharged. It turns out that the flow and density fields are not sensitive to the 
length of the opening, as long as the opening length remains small. The sink 
opening was taken to be twice the horizontal grid length, in all the numerical 
computations. The initial field is then slightly different from the solution in (26). 
This can be obtained by first making an initial guess for Y, using the solution in 
(26), then converging to the correct result by over-relaxation of (24), with no 
vorticity term. The convergence is quite rapid. 

3.3. Stretched co-ordinate system 
The present problem involves a boundary a t  infinity. A dilemma is posed by 
the conflicting requirements of keeping the finite-difference grid mesh fine in the 
vicinity of the sink, where the gradients are largest, and a t  the same time having 
the Iast grid point far enough away from the sink that it is a close approxima- 
tion to infinity. In  the initial phase of the computation, we used unstretched 
co-ordinates, with the upstream boundary set a t  a reasonably large distance from 
the sink. We found that, whenever the fastest-propagating disturbance (columnar 
wave of the first mode) reached this upstream boundary, a partial reflexion was 
inevitable, although a scheme was devised to absorb the wave. Thus, the flow 
field at  a given section invariably entailed some error, as soon as the reflected 
wave passed this section. 

We seek a co-ordinate system (5, X) whose mapping to ordinary Cartesian co- 
ordinates (2, z) is such that 5 varies from 0 to +- 1 as x varies from 0 to + 00. The 
transformation for such SL system is given by 
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where a is a scale factor. On substituting the transformation relation (27) into 
the governing equations (22)-(24), we obtain 

2 +a( I - Z )  - (uy) + a( i  - 5) - (w,y) a a 
a7 ax a2 

az(1 -2)2---a2(1 a2Y 
ax2 

a< a a -+a( 1 - X) - (UC) +a( 1 - X) - (wl<) 
a7 ax ax 

a25 ac a2C az(1 -x)z- - a2( 1 - E )  - + ax azz az a2 ' 

ayP azv ay 
ax2 ax a22  

a2(1-3)-+- = 5, a#( I - X ) 2 -  - 

where w1 = -avlax. 
The main reason for choosing (27) as the transformation relation is that Ax 

remains small near the origin, while it increases as x increases. By choosing the 
scale factor properly, Ax can be made equal to 0.1 near the origin, while Ax 
invariably becomes very large as x approaches infinity. Since in the present initial- 
value problem the disturbances are initiated a t  the origin and gradually propa- 
gated upstream toward large x, they would take some considerable time to pene- 
trate far upstream, unless Ir' is extremely small. Therefore, the finite-difference 
equations remain accurate until the disturbances reach the final few grid points 
near x = 00 where the grid spacings are large. At that time, steady state is estab- 
lished for small and moderate values of x. 

3.4. Finite-diflerence equations 
For finite differencing, a central difference in space and forward difference in 
time are used, except in the case of the nonlinear terms, for which the special 
three-point non-central differencing method (Torrance & Rockett 1969) is 
adopted. Equations (28) and (29) are parabolic, while (30) is elliptic and solved 
by the standard over-relaxation technique. The subscripts i andj  denote the space 
point in the x and z directions, respectively; and a prime denotes the new time 
point, For given values of i and j, the space co-ordinates are ?i? = iA3, x = jAz. 
With the foregoing notation, (28)-( 30) maybe written in the finite-difference form 
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FIGURE 9. The centre-line velocity at x = -3.0 for ..F = 0.15. A comparison between the 
numerical results obtained from stretched and unstretched co-ordinates. 

3.5. Numerical results 
To compare the numerical computations with the theoretical results in the 
preceding sections and the experimental results in part 2, all the numerical 
results are presented in the second quadrant of x, z space, where x is negative. 

43 F L M  65 
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Various Reynolds numbers were used, ranging from 20 to i06. For most computa- 
tions, Schmidt numbers ( v /D)  with values of 10 and 1000 were used, which 
approximately correspond to the temperature diffusion and salinity diffusion in 
water, respectively. Over ten values of the Froude number were used, ranging 
from 0.32 to 0.004. For all cases, AZ was chosen to be 0.05, which corresponds to 
20 equal grid spacings in the z direction. In  the x direction, various grid sizes 
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FIGURE 10. Numerical solution for the growth of centre-line velocity with time at  various 2. 
- , numerical solution. 

F Re SC 
(a )  0.004 20 7.14 

(c) 0.15 105 833 
( d )  0.106 3400 833 

were used, depending on the Froude number. For F = 0.014, 80 grid spacings in 
the Z direction are needed, while, for P 2 0.20, 40 grid spacings are sufficient. 

To see the necessity of introducing the stretched co-ordinates, we give a typical 
example. For F = 0.15, the centre-line velocity u, = u ~ I U  a t  the vertical 
section x = - 3 is plotted against the time 7 (as shown in figure 9). In  the initial 
phase of the numerical computation, unstretched co-ordinates were used, with 

( b )  0.0145 625 1000 

43-2 
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7 X C A  C 

0.075 - 1.8 

0.150 - 3.4 

0.225 - 5.0 

21.3 22.3 

21.3 22.3 

21.2 22.2 
0.275 - 6.06 

TABLE 1. Numerical values of the wave velocity of the first disturbance mode 
for F = 0.014 

the upstream boundary set a t  x = - 3, x = - 5 or x = - 7 (Ax = 0.1 for all the 
cases). Figure 9 shows that u, deviates from its true value as soon as the reflected 
wave reaches the section x = - 3. On the other hand, the stretched co-ordinates 
with 40 grid spacings in the x: direction do not have the ill effect of the re- 
flected waves; urn increases with r until r = 4.8, when it approaches a steady 
state. 

On careful examination of the flow development from the numerical results, it  
is indeed confirmed that the successive arrival of columnar disturbance modes 
can be identified as the mechanism responsible for the development of flow 
concentration in the withdrawal region. Figures 10 (a)-(c) show the growth of 
centre-line velocity with time at various x: for F = 0.004, 0.0143 and 0.15, 
respectively. For the low Froude numbers, one can see clearly the arrival and 
peaking of each mode. For F = 0.004 (Re = 20, Sc = 7.14) one can see the arrival 
and peaking of the first two modes, which are a linear superposition of the first 
two modes predicted by the linear theory (cf. figure 5 and its extrapolation to 
larger t ) .  By the time the third and higher modes arrive, the nonlinear interaction 
and viscous damping of these columnar disturbance modes become important, 
although the qualitative features of the linear theory remain valid for this very 
small value of F .  For F = 0-15, steady state is almost reached for 1x1 < 4 at the 
time r = 6.0. There is essentially no attenuation of the centre-line velocity 
between x = - 3 and x = - 4. The passage to steady state is further illustrated 
in figure 1O(d) for F = 0.106. It is seen that the centre-line velocity remains 
constant for all t > 50 (r > 5.3) for all x < 3 (i.e. the flow is steady for x < 3 
when t > 50). Comparison of the numerical with the experimental results for 
various F’s will be given in part 2 .  To see how the waves penetrate upstream, the 
centre-line velocity for F = 0.014 is plotted against x, with the time r as a para- 
meter (in figure 11). Again, for this low F ,  the spatial structure of the first dis- 
turbance mode is essentially the same as that predicted by the linear theory 
(as in figure 5 ) .  The forward tongue of the disturbance is indeed of permanent form. 
If we now focus our attention on the first mode, with urn = 1.5, the times and loca- 
tions when such a disturbance mode arrives are tabulated in table l .  The ad- 
vancing speed ca can then be calculated between each interval. Since the wave is 
advancing upstream against a basic current with average velocity equal to unity, 
the true velocity relative to the medium would then be c, + 1.0, which is shown in 
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FIGURE 11. Centre-line velocity u, against position x, showing the spatial structure 
of the disturbance at various 7, for F = 0.014, Re = 625, Sc = 833. 

U 

FIGURE 12. Comparison of the first mode analytic solution u = 1 + cos 7r.z with the numerical 
solution x at space-time points A, as shown in figures 11 and 13, for P = 0.014 and 0.20. 

the last column of table 1. This wave velocity is to be compared with the columnar 
wave speed of the first mode, which is 22.7. Therefore, at  this low P, the first 
mode essentially propagates with the speed derived from the linear theory. 
Moreover, the horizontal velocity profiles a t  points b-d are almost indistinguish- 
able, while there is only a very slight deviation at point a. The velocity profile 
is plotted in figure 12. It is seen that this velocity profile fits the curve 

u = 1+frcos7Tz 
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7 X C A  C 

3.2 - 2.2 

4.8 - 3.06 

6.4 - 3.9 

9.6 - 5.2 

0.538 1.538 

0.525 1.525 

0.406 1.406 

TABLE 2. Numerical values of the wave velocity of the first disturbance mode 
for P = 0.20 

E 
3 

-6 - 5  -4 - 3  -2 -1 

X 

FIGURE 13. Centre-line velocity u, against position x, showing the spatial structure of 
the disturbance at  various time 7, for F = 0.20, Re = 10000, S c  = 1000. 

very well. This is, of course, not surprising, since it is exactly the shape of the first 
disturbance mode. Therefore, it is clear now that the forward tongue of the dis- 
turbance is indeed of permanent form, and propagates with a speed predicted 
by the linear theory. Now consider the case for which F = 0.20. A plot like 
that of figure 11 is shown in figure 13. In  this case it is seen that only one distur- 
bance mode can penetrate upstream. Again let us focus our attention on the first 
mode with u, = 1.5. The times and locations for the arrival of the disturbance 
are tabulated in table 2 .  The wave velocity relative to the medium is listed in the 
last column, which is to ;be compared with the columnar wave speed of 1.59. 
The slight discrepancy is probably due to the fact that the basic current is no 
longer uniform as the wave progresses upstream. However, the horizontal velo- 
city profiles a t  points a-d are almost indistinguishable from the expression 
u = 1 + 4 cos T Z .  In  other words, the forward tongue of the disturbance is again 
of permanent form, and advances a t  approximately the wave speed predicted by 
the linear theory. This is not surprising in view of (18), where the solutions are 
shown to satisfy the nonlinear equations, provided IP3!/tk21 > la2Y/8x21, and 
provided only one mode is present. These provisions are precisely satisfied in 
the advancing tongue of the first mode for any P < n-l. Therefore, the present 
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FIGURE 14. Steady-state pattern for F = 0.32, Re = 10000, Sc = 1000. 
(a )  Numerical solution. ( b )  Yih's solution. 

linear theory can very well predict the progress of disturbance modes and the 
permanent form of the forward tongue, and, for sufficiently small values of 
F (less than 10-2), the development of the flow field for a reasonable interval of 
time. But it cannot give the steady-state flow profile, except for F --f 0, since 
then nonlinear effects become important. 

The effect of Reynolds number or viscosity on the numerical solutions is now 
discussed briefly. For small P (say F = 0-014), the corresponding Reynolds 
number is O( 1 0 2 )  and viscous effects contribute to the attenuation of the higher 
modes. At higher F and higher Re, the influence of viscosity is no longer important 
for 1x1 < 5.  The solution remains essentially the same, with several orders of 
magnitude increase in Re. The effect of changes in diffusivity on the flow and 
density fields is also very small. For example, numerical solutions for P = 0-15 
have been computed for Re = 1 0 4  and Sc  = 10, and Re = 106 and Sc  = 833. The 
flow and density fields are found to be almost indistinguishable between these two 
cases a t  all times (in general, the computation was terminated before the steady 
state was reached for 1x1 > 4). This shows that the flow and density fields are 
independent of Re and Re Sc, provided these two values are large. Similar results 
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FIGURE 15(a). For legend see facing page. 

0 

were obtained for other values of F, ranging from 0.32 to 0-0713. Thus the estab- 
lishment of the flow and density fields is essentially inviscid and non-diffusive 
for the range F > 0.07 and Re > lo4 (with Sc > 1) .  

As mentioned above, a numerical computation for F = 0.32 was also made €or 
which F was slightly above the critical value n - I .  It is seen that no wave can 
propagate upstream, and that the flow remains uniform far upstream, in agree- 
ment with Yih (1958, 1965). A steady-state flow pattern is shown in figure 14(a). 
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FIGURE 15. (a)  Streamlines and ( b )  constant-density lines, 
for F = 0.20, Re = 106, Sc = 833. 

X 

The flow in the upper right corner is seen to slow down substantially, and even to 
become almost stagnant, but no corner eddy appears. This is in contrast to Yih’s 
solution for the same value of P. A reproduction of Yih’s solution (Yih 1965, 
p. 85) is shown in figure 14(b), for comparison. Yih pointed out that the appear- 
ance of a slow corner eddy implies a breakdown of his solution; but the present 
numerical solution shows no such unrealistic feature. Indeed, in Yih’s inviscid 
steady-state formulation, the solution does not exist for F = n-l, implying 
perhaps some abrupt changes near F = n-1; the numerical solution shows that 
the transition from non-selective to selective withdrawal is smooth. The critical 
value F = n-1 only marks the division above which no waves can penetrate 
upstream, and hence no selective withdrawal. However, no abrupt changes in flow 
and density fields occur through this transition. For comparison, a steady-state 
flow pattern for P = 0.20 is also shown in figure 15(a). It is seen that the transition 
from the supercritical to subcritical regime is indeed quite smooth. The transition 
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FIGTIRE 16. Numerical withdrawal-layer thickness as a function of (X/X$.  0, P = 0.20; 
0, 0.15; 0, 0.106. A, P = 0.032, Re = 40, Sc = 833; 8, P = 0.106, Re = 100, S c  = 7.14. 

is marked by the gradual appearance of stagnant zone in the top region as P 
decreases below 7r-l. The thickness of the stagnant zone increases gradually 
instead of abruptly as P decreases through rl. The flow in the region above the 
line 7 = 1 is essentially stagnant (where 7 = Zu2/2Q). Figure 15(a) also shows 
the flow pattern at  an earlier time for P = 0.20. Steepening of the streamlines 
and occurrence of a stagnant zone can be seen clearly. The constant-density lines 
are shown in figure 15(b) .  

The growth of the thickness of the withdrawal layer with distance from the 
sink is now obtained from the numerical solutions. This is shown in figure 16, 
in which 6/a is plotted against (X/X,)*, where 6 = 2&/u;, a = (2&/N)B and 
X ,  = (2P)Q (vD)-*Nd3 is a viscous-diffusive scalelength, introduced by Imberger 
(1972). The two solid lines are the integral solution of Imberger-f for salt and 
temperature. The points denote the present numerical solutions. From figure 16, 
we may discern two regimes of flow, inviscid and viscous, according to the magni- 
tude of (X /X , ) .  For (X /X , ) s  very small, say less than 0.05, X ,  is no longer the 
appropriate scaling length. This is clearly seen, for example, in the case of 
P = 0.15, figure 16, where S/a is calculated at the same x but different Xc7s. 
The values of 6/a for the same x remain unchanged, and do not depend on X ,  for 
(X/X,)* < 0.05. The solution is therefore inviscid, and is not scaled by X,. 
For (X/Xc)* > 0.05, viscous and diffusive effects come into play. X ,  is now an 
appropriate scaling length. The trend indicates an approach to Imberger’s 
(1972) result. For that regime, it is also shown in the figure that the effect of 
diffusion, indicated by two different values of #c corresponding to salt and tem- 

-f Although Imberger used the withdrawal thickness S12, which is defined to be the width 
a t  which the velocity has dropped to*m, no such distinction is made in figure 16. 
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FIGURE 17.  Numerical withdrawal-layer thickness as a function of d. 3’ = 0.106, 
x c -  - 1.00 x lo6; P = O.15,xc = 3.46 x lo4 and x, = 3.16 x lo6; F = 0 . 2 0 , ~ ~  = 3.99 x lo5. 

perature, separates the solution into two distinct branches, again in agreement 
with Imberger’s results. It is seen that the numerical curves are below those of 
Imberger. It will further be shown in part 2 that the present result is in better 
agreement with experiment. But it should be pointed out that, for (X/X,)* < 1, 
Imberger’s result depends on the choice of a constant (K3 in Imberger 1972). 
A certain degree of variation is thus allowed in Imberger’s curves, depending on 
the matching condition to the inviscid region near the sink. Imberger applied 
the matching a t  (X/X,) = 0,  whereas it is seen that the matching should be done 
away from (X /Xc)  = 0. I n  any case, the present results give the correct solution 
to the inviscid problem, and for small values of (X/X,)s.  

Returning now to the inviscid regime, for which (X /X , ) t  < 0-05, we find that 
a more appropriate plot would be S/a against x*. This is figure 17, which shows that  
&/a is a function of x) only, and does not depend on X,. I n  other words, for very 
small values of (X /X , ) ,  the solution is indeed inviscid. That this is SO also follows 
from Imberger’s (1972) scaling arguments. The growth of S/a with xis now due to 
the near-field effect of the sink. This point is brought out more clearly by compar- 
ing with Kao’s (1970) inviscid free-streamline solution, which is also plotted in 
the figure. It is seen that  the near-field growth of that  solution for 1 < 1x1 < 4 
alsofollowsx* to a good degree of approximation. For 1x1 > 4, no further growth 
is indicated. 

The steady-state velocity profiles for 1x1 < 4 were computed from the numeri- 
cal solution for 3 = 0.32, 0.20, 0.15, 0.106, 0.0713 and 0-032. We now plot all 
the numerical values of u/u, against the variable 7. This is done in figure 18, 
which shows that the numerical points for all the computations with Froude 
numbers between 0-032 and 0.20 essentially collapse into a single curve. For com- 
parison, the forward-moving portion of Koh’s (1 966 a) solution for the linearized 
viscous-diffusive case, and the nonlinear large-Reynolds-number integral solu- 
tion given by Imberger (1972) are also shown in the figure. I n  the present numeri- 
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FIGURE 18(a). For legend see facing page. 

cal computations, Re ranges from 20 to los. It appears that there is overall 
agreement, in the similarity profile, between the present numerical results and 
previous results based on the boundary-layer assumption. On the other hand, 
provided that Re > lo4, Sc > 1 and (X/X,)* < 1, the present results indicate 
that the steady state is established in an jnviscid manner. This fact can be re- 
conciled with Imberger's boundary-layer assumption, by observing that, while 
the velocity profile retains its boundary-layer nature, the scaling is no longer 
viscous-diffusive. The hydrostatic condition, which remains valid under the 
boundary-layer assumption in the limit of vanishing viscosity, is perhaps the 
more fundamental feature underlining the similarity. The present solution there- 
fore settles, a t  least from a numerical viewpoint, the nature of the steady solution 
in the near field or for (XIX,) < 1. It turns out that the similarity profile also 
fits very well the simple expression 

l r '  Irl 3 1.  

u/u, = *( 1 + cos my), 
UIU, = 0, 

(34) 
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(b) 

4% 
FIGURE 18. Steady-state horizontal velocity profiles at various B'.compared with Imberger's 
(-) and Koh's (- --) result. 

F Re s c  

0 0.032 40 833 
( a , ) [ Q  0.106 100 7-14 
8 0.15 100 1000 

(b )  0.15 10 000 10 

( b )  0, x = -0.640; 0, -0.992; @ ,  -1.928; 8, -3.081; 0 ,  -4.105. 

In  fact, figure 18 shows that ( 3 4 )  fits the numerical points better than Koh's and 
Imberger's theory. Moreover, the velocity profile in ( 3 4 )  satisfies the integral 
condition derived from the continuity equation; and it meets the 7 axis 
tangentially a t  17 I = 1. The value of 2 a t  which 17 1 = 1 obviously delineates very 
well the thickness8 of the withdrawal layer (i.e. 6 = 2Q/u;). This similarity profile 
will be discussed again in the light of our experimental data in part 2 .  

Since u, is a function of x only, it  can be shown, from (34) and the continuity 
equation, that the vertical velocity field is 

whereuj, = dum/dx.  
The steady-state density fields for 1x1 < 4 were also computed for F ranging 

from 0.32 to 0.032.  Density profiles at x = - 3 for various F ranging from 0-20  
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FIGURE 19. Steady-state density profiles at I(: = - 3 for P = 0.032, 

0.0713, 0-106, 0.15 and 0.20. 

to 0.032 are plotted in figure 19. It is seen that, for x < 0.4, the density profiles 
are essentially the same for 0.0713 < P < 0.20. Moreover, the density gradient 
a t  the centre-line increases substantially from the original value. Some numerical 
values of the density gradient at  the centre-line are also given in table 3. It is 
Seen that the density gradient at  the centre-line, for large Re, is essentially in- 
dependent of P for 0.0713 < 3’ < 0-20. For smaller values of P, the density 
gradient at the centre-line can still be estimated from the time-dependent trend 
of the numerical solution. This is also shown in table 3. The density gradient 
a t  the centre-line decreases as 3’ decreases to small values. For the development 
of the flow discussed, the vertical convergence of the flow field in the vicinity of 
the centre-line is induced as columnar disturbances progress upstream; this in 
turn leads to increase of the density gradient there, since the density is essentially 
a conserved quantity here. (An analogous phenomenon also occurs in selective 
withdrawal in a rotating fluid (Pa0 & Shih 1973), where the radial convergence 
of the flow field, induced by the ‘ blocking waves ’, leads to the spin-up of the 
central core.) 

The authors are indebted to the Atmospheric Sciences Section of the National 
Science Foundation for support under grant GA-23784. 
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